Question Number	Answer	Mark
1(a)	2/3 that of a proton / 2/3 x 1.6 x 10 ⁻¹⁹ (C)	(1)
1(b)	Mass = 80 MeV/c^2 charge = $+1/3$	(1) (1)
1(c)	Recognition M means 10^{6} Convert eV to J or divide by c^{2} eg 4 x 10^{6} x 1.6 x 10^{-19} or /9x 10^{16}	(1) (1)
	Answer 7.1 x 10 ⁻³⁰ (kg)	(1)
1(d)(i)	Kaon Meson Omega baryon	(1) (1)
1(ii)	K ⁻ + p = K ⁺ + K ^o + Ω ⁻ [accept p or p ⁺ ;do not accept K for K ^o ;signs must be top right]	(1) (1)
1(iii)	Kaon plus = $u \overline{s}$ Kaon neutral = $d \overline{s}$ or $s \overline{d}$ [both marks can be inferred if equation in d(ii) is fully written in	(1) (1)
1(iv)	quark combinations) QWC i and iii - Spelling of technical terms must be correct and the answer must be organised in a logical sequence	
	Momentum conserved Charge conserved Energy / mass conserved E =mc ² <u>Kinetic</u> Energy (of kaon minus) is responsible	(1) (1) (1) (1) (1)
	Momentum of three particles after = momentum of kaon before Total charge 0 / charge before and after is 0 Conservation of Baryon no, quark no, strangeness	(1) (1) (1) (allow only 1 mark max from these 3)
	Total for question	5 max 17

Question Number	Answer		Mark
2(a)	4 is the number of nucleons Or number of neutrons and protons Or mass number Or nucleon number	(1)	
	2 is the number of protons Or proton number Or atomic number	(1)	2
2(b)(i)	(The particles are moving) close to the speed of light	(1)	
2(b)(ii)	To create particle /antimatter Or To allow (large) repulsive forces to be overcome Or To break the particles (into their constituents)	(1)	1
2(b)(iii)	Mass = 4u (accept use of $4m_p$) Use of $E = mc^2$ Division by e Mass = 3.74 (GeV/ c^2) (use of mass of proton instead of $u \rightarrow 3.76 \text{ GeV}/c^2$)	(1) (1) (1) (1)	4
	Example of calculation mass = $4 \times 1.66 \times 10^{-27}$ kg = 6.64×10^{-27} kg $mc^2 = 6.64 \times 10^{-27}$ kg × (3×10^8 m s ⁻¹) ² = 6.0×10^{-10} J 6.0×10^{-10} J / 1.6×10^{-19} Mass = 3.74 GeV/ c^2		
2(b)(iv)	They meet matter (helium nuclei) and <u>annihilate</u>	(1)	
2b)(v)	Use of $E = hf$ ecf E from (iii)	(1)	
	Frequency = 9.02×10^{23} Hz (using 3.74 GeV/c ²) (3.76 GeV/c ² \rightarrow 9.07 $\times 10^{23}$ Hz 4 GeV/c ² \rightarrow 9.65 $\times 10^{23}$ Hz)	(1)	2
	(half or double these values, due to a stray 2 can score 1st mark) (use of $\lambda = h/p$ scores 0)		
	Example of calculation $f = 3.74 \times 10^9 \times 1.6 \times 10^{-19} \text{ J} / 6.63 \times 10^{-34} \text{ Js}$ $f = 9.02 \times 10^{23} \text{ Hz}$		
$\frac{2(\mathbf{c})(\mathbf{i})}{2(\mathbf{c})(\mathbf{i})}$	Quark and antiquark	(1)	
2(c)(ii)	p consists of u u d	(1)	
	$-\frac{2}{3}e -\frac{2}{3}e + \frac{1}{3}e = -e$ must be consistent with structure of p	(1)	
	\overline{n} consists of \overline{d} \overline{d} \overline{u}	(1)	
	$+\frac{1}{3}e + \frac{1}{3}e - \frac{2}{3}e = 0$ must be consistent with structure of n	(1)	4
	(The sum must be clearly shown for marks 2 & 4)		

Question Number	Answer		Mark
3(a)	To curve the tracks/paths Or to produce a centripetal force/acceleration Or to allow particles to spiral Or to produce an arc Or to produce circular motion	(1)	
	So that momentum/energy/charge/ velocity/mass can be investigated	(1)	2
3(b)	The <u>radius</u> of curve gets less Or curvature increases	(1)	
	(Because) particle slows down Or loses energy Or loses momentum	(1)	2
3c)	(Magnetic field) out of page	(1)	
3(d)(i)	Does not leave a track Or there is only one visible track for μ^+	(1)	
	Clear demonstration of charge conservation in this situation	(1)	2
3(d)(ii)	Reference to momentum	(1)	
	Reference to change of direction of the visible path	(1)	
	(Hence) another particle must have an equal but opposite change of		3
	momentum Or another particle produced to conserve momentum	(1)	
	Total for question		10

Question	Answer		Mark
Number			
4(a)	Same mass (do not credit similar mass)	(1)	
	Opposite charges on nucleus Or atom not charged/neutral (do not credit 'atoms have opposite charges'. A correct statement in terms of charges on all four particles gets 2nd mark.)	(1)	2
	(Ignore references to Baryon number, Lepton number and quarks)		
4(b)	Use of $F = k Q_1 Q_2 / r^2$ Magnitude of both charges is 1.6×10^{-19} C Force = 8.2×10^{-8} N	(1) (1) (1)	3
	Example of calculation $F = 8.99 \times 10^9 \text{ N m}^2 \text{ C}^{-2} (1.6 \times 10^{-19} \text{ C})^2 / (5.3 \times 10^{-11})^2$ $F = 8.19 \times 10^{-8} \text{ N}$		
4(c)	Atoms are not charged Magnetic / electric fields have no effect	(1) (1)	2
	(Can't be contained in particle accelerators is not sufficient and ignore all comments about annihilation)		
4(d)(i)	Use of $E = mc^2$ Total mass involved is 2 mg (ignore powers of 10 error) Energy = 1.8×10^{11} (J)	(1) (1) (1)	3
	Example of calculation Energy = 2×10^{6} kg $(3 \times 10^{8} \text{ m s}^{-1})^{2}$ Energy = 1.8×10^{11} J		
4(d)(ii)	Need a lot of energy (to produce anti-matter)	(1)	
	Total for question		11